15 Декабря 2016

Researchers in AMBER, the Science Foundation Ireland-funded materials science research centre, hosted in Trinity College Dublin, have used the wonder material graphene to make the novelty children's material silly putty® (polysilicone) conduct electricity -- creating extremely sensitive sensors.

Graphene and silly putty make state-of-the-art sensor

Researchers in AMBER, the Science Foundation Ireland-funded materials science research centre, hosted in Trinity College Dublin, have used the wonder material graphene to make the novelty children's material silly putty® (polysilicone) conduct electricity -- creating extremely sensitive sensors.  

This world-first research, led by Trinity's Professor of Chemical Physics, Jonathan Coleman, in collaboration with Professor Robert Young of the University of Manchester, offers exciting possibilities for applications in new, inexpensive devices and diagnostics in medicine and other sectors.

The AMBER team's findings have been published in the leading journal Science.   Professor Coleman, Investigator in AMBER and Trinity's School of Physics along with postdoctoral researcher Conor Boland, discovered that the electrical resistance of putty infused with graphene ("G-putty") was extremely sensitive to the slightest deformation or impact.   They mounted the G-putty onto the chest and neck of human subjects and used it to measure breathing, pulse and even blood pressure. It showed unprecedented sensitivity as a sensor for strain and pressure, being hundreds of times more sensitive than normal sensors. The G-putty also works as a very sensitive impact sensor, able to detect the footsteps of small spiders. The scientists believe that this material will find applications in a range of medical devices.  

Professor Coleman said, "What we are excited about is the unexpected behaviour we found when we added graphene to the polymer, a cross-linked polysilicone. This material as well known as the children's toy silly putty. It is different from familiar materials in that it flows like a viscous liquid when deformed slowly but bounces like an elastic solid when thrown against a surface. When we added the graphene to the silly putty, it caused it to conduct electricity, but in a very unusual way. The electrical resistance of the G-putty was very sensitive to deformation with the resistance increasing sharply on even the slightest strain or impact. Unusually, the resistance slowly returned close to its original value as the putty self-healed over time. While a common application has been to add graphene to plastics in order to improve the electrical, mechanical, thermal or barrier properties, the resultant composites have generally performed as expected without any great surprises. The behaviour we found with G-putty has not been found in any other composite material. This unique discovery will open up major possibilities in sensor manufacturing worldwide."  

Professor Mick Morris, Director of AMBER, said: "This exciting discovery shows that Irish research is at the leading edge of materials science worldwide. Jonathan Coleman and his team in AMBER continue to carry out world-class research and this scientific breakthrough could potentially revolutionise certain aspects of healthcare."  

Source and top image: Trinity College Dublin

Комментарии ()
Текст сообщения*
Загрузить файл или картинкуПеретащить с помощью Drag'n'drop
Перетащите файлы
Ничего не найдено
Отправить Отменить

Также в рубрике

Ink-jet printable and biocompatible layered electronics
4 Апреля 2017
Ink-jet printable and biocompatible layered electronics

Printed electronics can lead to both low-cost and flexible devices. Flexible electronics is of particular interest for wearable systems, such as health and fitness trackers, while the relative low-costs of printing are attractive for functional packaging for consumer products. Graphene and related layered materials (GRMs) are ideal for printed electronics because they can be readily solution processed into inks that have excellent electronic properties.
Stretchable electronics: no longer a solution looking for a problem
21 Марта 2017
Stretchable electronics: no longer a solution looking for a problem

The electronic industry is in the midst of a major paradigm shift: novel form factors are emerging, ranging from the introduction of limited stretchability, through to ultra-elastic and conformable electronics. This transfiguration has been in the making for more than a decade now, but it is only now that it is beginning to make a substantial commercial impact.
Wearable robotic tools for surgery
17 Марта 2017
Wearable robotic tools for surgery

A collaborative team of researchers is to develop a wearable robotic system for minimally invasive surgery, also known as keyhole surgery, that will offer surgeons natural and dexterous movement as well as the ability to 'sense', 'see', control and safely navigate through the surgical environment.