8 Декабря 2016

Ground-breaking research from the University of Surrey and Augmented Optics Ltd, in collaboration with the University of Bristol, has developed potentially transformational technology which could revolutionise the capabilities of appliances that have previously relied on battery power to work.

Scientific breakthrough reveals unprecedented alternative to battery power storage

Ground-breaking research from the University of Surrey and Augmented Optics Ltd, in collaboration with the University of Bristol, has developed potentially transformational technology which could revolutionise the capabilities of appliances that have previously relied on battery power to work.

This development by Augmented Optics Ltd, could translate into very high energy density super-capacitors making it possible to recharge your mobile phone, laptop or other mobile devices in just a few seconds.

The technology could have a seismic impact across a number of industries, including transport, aerospace, energy generation, and household applications such as mobile phones, flat screen electronic devices, and biosensors.  It could also revolutionise electric cars, allowing the possibility for them to recharge as quickly as it takes for a regular non-electric car to refuel with petrol – a process that currently takes approximately six to eight hours to recharge.  Imagine, instead of an electric car being limited to a drive from London to Brighton, the new technology could allow the electric car to travel from London to Edinburgh without the need to recharge, but when it did recharge for this operation to take just a few minutes to perform.

Supercapacitor buses are already being used in China, but they have a very limited range whereas this technology could allow them to travel a lot further between recharges.  Instead of recharging every two to three stops this technology could mean they only need to recharge every 20-30 stops and that will only take a few seconds.

Elon Musk, of Tesla and SpaceX, has previously stated his belief that supercapacitors are likely to be the technology for future electric air transportation.  We believe that the present scientific advance could make that vision a reality. 

The technology was adapted from the principles used to make soft contact lenses, which Dr Donald Highgate (of Augmented Optics, and an alumnus of the University of Surrey) developed following his postgraduate studies at Surrey 40 years ago.  Supercapacitors, an alternative power source to batteries, store energy using electrodes and electrolytes and both charge and deliver energy quickly, unlike conventional batteries which do so in a much slower, more sustained way. Supercapacitors have the ability to charge and discharge rapidly over very large numbers of cycles.  However, because of their poor energy density per kilogramme (approximately just one twentieth of existing battery technology), they have, until now, been unable to compete with conventional battery energy storage in many applications.

Dr Brendan Howlin of the University of Surrey, explained: “There is a global search for new energy storage technology and this new ultra capacity supercapacitor has the potential to open the door to unimaginably exciting developments.”

The ground-breaking research programme was conducted by researchers at the University of Surrey’s Department of Chemistry where the project was initiated by Dr Donald Highgate of Augmented Optics Ltd.  The research team was co-led by the principal investigators Dr Ian Hamerton and Dr Brendan Howlin.  Dr Hamerton continues to collaborate on the project in his new post at the University of Bristol, where the electrochemical testing to trial the research findings was carried out by fellow University of Bristol academic - David Fermin, Professor of Electrochemistry in the School of Chemistry.

Dr Ian Hamerton, Reader in Polymers and Composite Materials from the Department of Aerospace Engineering at the University of Bristol, said:  “While this research has potentially opened the route to very high density supercapacitors, these *polymers have many other possible uses in which tough, flexible conducting materials are desirable, including bioelectronics, sensors, wearable electronics, and advanced optics.  We believe that this is an extremely exciting and potentially game changing development.”

*the materials are based on large organic molecules composed of many repeated sub-units and bonded together to form a 3-dimensional network.

Jim Heathcote, Chief Executive of both Augmented Optics Ltd and Supercapacitor Materials Ltd, said: “It is a privilege to work with the teams from the University of Surrey and the University of Bristol.  The test results from the new polymers suggest that extremely high energy density supercapacitors could be constructed in the very new future.  We are now actively seeking commercial partners in order to supply our polymers and offer assistance to build these ultra high energy density storage devices.”

Further information

About Augmented Optics Ltd/Supercapacitor Materials Ltd
Augmented Optics Ltd was incorporated three years ago to research and develop new electronically conducting polymers. The company has commissioned research at the University of Surrey and an evaluation programme at the University of Bristol that has generated important new materials with potentially valuable commercial properties. It was founded by Dr Donald Highgate, Jim Heathcote and Nigel Spence. Dr Highgate and Jim Heathcote have worked together on advanced polymers and energy technology for 15 years. The company has been funded by a number of investors expert in the support and exploitation of new technologies.

In light of the recent discovery of ‘high capacitance’ polymers that may be ready for immediate commercialisation a wholly owned subsidiary Supercapacitor Materials Ltd was registered and has the website www.Supercapacitormaterials.com

Source: http://www.bris.ac.uk/news/2016/december/super-capacitors.html  
Комментарии ()
Текст сообщения*
Загрузить файл или картинкуПеретащить с помощью Drag'n'drop
Перетащите файлы
Ничего не найдено
Отправить Отменить

Также в рубрике

Mitsubishi, Eneco work together on 50MWh energy storage project in Germany
11 Апреля 2017
Mitsubishi, Eneco work together on 50MWh energy storage project in Germany

The latest project to be dubbed “Europe’s largest battery” will be a 50MWh project from Dutch energy supplier Eneco and Japanese conglomerate Mitsubishi Corporation in Jardelund, Germany.
7 Energy Storage Disruptors to Watch
21 Марта 2017
7 Energy Storage Disruptors to Watch

The energy storage industry is growing quickly as battery technologies evolve and costs continue to fall, spurring innovations that will change how we use, store, buy, and sell energy.
ComEd Conducting Illinois’ First Community Energy Storage Pilot
16 Марта 2017
ComEd Conducting Illinois’ First Community Energy Storage Pilot

ComEd announced today the launch of a pilot project to test the use of battery storage technology to reduce the impact of power outages in residential areas where customers experience service interruptions, particularly in extreme weather events.