16 Декабря 2016

An innovative new cheap and simple mass production technique, developed by the University of Exeter, is set to open up the global potential of the ‘wonder’ material graphene.

Ground-breaking production method could accelerate worldwide ‘graphene revolution’

An innovative new cheap and simple mass production technique, developed by the University of Exeter, is set to open up the global potential of the ‘wonder’ material graphene.

A team of engineers from Exeter’s Centre for Graphene Science have developed a new method for creating entire device arrays directly on the copper substrates used for the commercial manufacture of graphene. Complete and fully-functional devices can then be transferred to a substrate of choice, such as silicon, plastics or even textiles.

Professor David Wright, from Exeter’s Engineering department and one of the authors said: “The conventional way of producing devices using graphene can be time-consuming, intricate and expensive and involves many process steps including graphene growth, film transfer, lithographic patterning and metal contact deposition. Our new approach is much simpler and has the very real potential to open up the use of cheap-to-produce graphene devices for a host of important applications from gas and bio-medical sensors to touch-screen displays.”

To demonstrate the new process, the team have produced a flexible and completely transparent graphene-oxide based humidity sensor that would cost pennies to produce using common wafer-scale or roll-to-roll manufacturing techniques, yet can outperform currently available commercial sensors.

The new research features in the latest online edition of the Institute of Physics’ respected journal, 2D Materials

Professor Monica Craciun, also from Exeter’s engineering department and co-author added: “The University of Exeter is one of the world’s leading authorities on graphene, and this new research is just the latest step in our vision to help create a graphene-driven industrial revolution. High-quality, low cost graphene devices are an integral part of making this a reality, and our latest work is a truly significant advance that could unlock graphene’s true potential.”

Source and top image: University of Exeter

Комментарии ()
Текст сообщения*
Загрузить файл или картинкуПеретащить с помощью Drag'n'drop
Перетащите файлы
Ничего не найдено
Отправить Отменить

Также в рубрике

Spray on memory could enable bendable digital storage
10 Апреля 2017
Spray on memory could enable bendable digital storage

USB flash drives are already common accessories in offices and college campuses. But thanks to the rise in printable electronics, digital storage devices like these may soon be everywhere - including on our groceries, pill bottles and even clothing.
Ink-jet printable and biocompatible layered electronics
4 Апреля 2017
Ink-jet printable and biocompatible layered electronics

Printed electronics can lead to both low-cost and flexible devices. Flexible electronics is of particular interest for wearable systems, such as health and fitness trackers, while the relative low-costs of printing are attractive for functional packaging for consumer products. Graphene and related layered materials (GRMs) are ideal for printed electronics because they can be readily solution processed into inks that have excellent electronic properties.
Stretchable electronics: no longer a solution looking for a problem
21 Марта 2017
Stretchable electronics: no longer a solution looking for a problem

The electronic industry is in the midst of a major paradigm shift: novel form factors are emerging, ranging from the introduction of limited stretchability, through to ultra-elastic and conformable electronics. This transfiguration has been in the making for more than a decade now, but it is only now that it is beginning to make a substantial commercial impact.